Prediction of Student Performance in Engineering Programs
نویسنده
چکیده
National and European debate consistently recognises the need for Europe to produce greater numbers of highly-skilled graduates in engineering and technology fields in order to improve our competitiveness in the global economy. Despite the importance of this being frequently stressed in policy discussions and the media, both applicant and graduate numbers in these fields are not increasing quickly enough to keep up with demand from industry and academia [1].
منابع مشابه
A method of performance estimation for axial-flow turbines based on losses prediction
The main objective in this paper is creating a method for one-dimensional modeling of multi stage axial flow turbine. The calculation used in this technique is based on common thermodynamics and aerodynamics principles in a mean stream line analyses. In this approach, loss models have to be used to determine the entropy increase across each section in the turbine stage. Finally, the analysis an...
متن کاملPerformance Prediction Modeling of Axial-Flow Compressor by Flow Equations
Design models of multi- stage, axial flow compressor are developed for gas turbine engines. Axial flow compressor is one of the most important parts of gas turbine units. Therefore, its design and performance prediction are very important. One-dimensional modeling is a simple, fast and accurate method for performance prediction of any type of compressors with different geometries. In this appro...
متن کاملPrediction of Student Learning Styles using Data Mining Techniques
This paper focuses on the prediction of student learning styles using data mining techniques within their institutions. This prediction was aimed at finding out how different learning styles are achieved within learning environments which are specifically influenced by already existing factors. These learning styles, have been affected by different factors that are mainly engraved and found wit...
متن کاملS3PSO: Students’ Performance Prediction Based on Particle Swarm Optimization
Nowadays, new methods are required to take advantage of the rich and extensive gold mine of data given the vast content of data particularly created by educational systems. Data mining algorithms have been used in educational systems especially e-learning systems due to the broad usage of these systems. Providing a model to predict final student results in educational course is a reason for usi...
متن کاملAc 2007-2977: Use of a Neural Network Model and Noncognitive Measures to Predict Student Matriculation in Engineering
Engineering students’ affective self-beliefs prior to their first year have the potential to help researchers better understand various issues related to student retention and engagement. This paper examines whether a neural network model based on student noncognitive characteristics can be used to predict student persistence in engineering, and the influence of gender in the predictive model. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012